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Abstract. PARTHEOQ, a sound and complete or-parallel theorem prover for first order logic is
presented. The proof calculus is model elimination. PARTHEO consists of a uniform network
of sequential theorem provers communicating via message passing. Each sequential prover is
implemented as an extension of Warren’s abstract machine. PARTHEO is written in parallel
C and running on a network of 16 transputers. The paper comprises the system architecture,
the theoretical background, details of the implementation, and results of performance mea-
surements.
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1 Introduction

Al systems are in constant need of powerful and efficient inference mechanisms. Within
many areas of application logic-based languages seem to be an appropriate choice. A
popular and successful realization is Prolog, which is moderately efficient, but lacks
in expressiveness, mainly because of its restriction to Horn clauses. Certainly, full
first order logic would be more powerful and comfortable, but at the price of a more
difficult implementation. One promising approach is to use the model elimination
calculus, which is complete for first order logic. As this calculus is sequence-based
and needs no factoring it seems even more machine-oriented than resolution, which
is a set-based calculus. Model elimination can efficiently be implemented, e.g. using
Prolog-like technology. This has been convincingly demonstrated with Stickel’s PTTP
[Sti88] and, recently, with our SEquential THEOrem prover SETHEO [LBSBS9].

A further promising potential for gaining high efficiency is the use of parallelism.
In the field of theorem proving, particularly, the huge search space poses a severe
problem. Therefore it seems a good decision to distribute and explore the search space
in parallel, a method known as or-parallelism. This type of parallelism involves that
on each node there must reside an efficient inference machine. Since with SETHEO we
already had developed a very efficient inference machine, it was natural to employ it
as the kernel in the design of PARTHEO, with the additional advantage that almost all

9This work was supported by the European Community and Nixdorf Computer AG within the
ESPRIT project 415F.



features of the sequential SETHEO carry over into our parallel system. Thus PARTHEO
can be used both as a theorem prover and an interpreter of LOP, a logic programming
language under development. It offers, e.g. the use of (non-logical) global variables and
destructive assigment, with a clear and simple declarative semantics [L.S88].

From the hardware point of view we aim at a large number of processors. Current
technology seems to favour networks of processors communicating via message passing
without common memory. Such systems also allow for a good scalability. Practical
considerations led us to the decision to implement PARTHEO on a network of trans-
puters.

The paper is organized as follows. The next section sets out the modular architec-
ture of the entire system. The third section describes the underlying proof calculus.
The exploitation of parallelism is described in the fourth section. In the fifth section
we present details of the implementation of the network and the parallel abstract ma-
chine APM. Some results of performance measurements are given in the sixth section.
Related work is briefly summarized in the seventh section. We conclude with assessing
the main features and perspectives of our approach.

2 System Architecture

Our system is strongly modularized. It consists of five independent modules: transfor-
mation part, preprocessor, compiler, main proof procedure, and user interface. PARTHEO
differs from the sequential SETHEO only in the main proof procedure: in PARTHEO
it is implemented and executed on a parallel machine, a network of transputers. The
modules of the system and the control flow are depicted in Figure 1.
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Figure 1: System architecture

Since the core of the system can handle clausal form formulae only, a transformation
module 1s added which converts formulae in ordinary logical notation, i.e. formulae
containing quantifiers, logical operators, etc. into Skolemized clause normal form. We
offer two transformations: one is the standard equivalence preserving method, which is
of exponential complexity in the worst case; the other one is the method described in
[Ede85], which is polynomial. The other modules work with formulae in clause normal
form only.



The preprocessing part aims at reducing the size of the input formula before initiat-
ing the main proof procedure. It combines features that just eliminate redundant parts
of the input formula with others that anticipate inferences of the proof process itself.
Currently our preprocessing module consists of five independent submodules: tautol-
ogy reduction, restricted unit resolution, subsumption reduction, purity reduction, and
isolated connection reduction. For a detailed description consult [LBSB89].

The inference machine, the sequential version as well as the parallel one, is realized
as an abstract machine. Hence the formula must be compiled into abstract machine
code. In the compilation phase the clauses of the input formula are translated into con-
trapositives. Optionally, syntactical pruning constraints are inserted. For optimization
purposes, the clauses and literals are reordered and a connection graph, expressing
all unifiable connections between the literals of the formula, is generated. The latter
helps to avoid a lot of useless unification attempts. Afterwards the contrapositives are
translated into extended Warren code, which is loaded onto the network.

During the main proof procedure these abstract machine instructions are interpreted
in parallel by a network of Abstract Partheo Machines.

A user interface gives information about the result of the proof proces. For instance,
the proof tree can be displayed graphically. This interface can also be used during the
proof process for visualizing the current state of the parallel system.

A detailed description of the entire system and its modules can be found in [LBSB89]
and [BEvdIK*89].

3 The Proof Calculus

The proof calculus underlying the inference system is model elimination. Model elim-
ination has first been introduced in the light of resolution (see, e.g. [Lov78]), which is
a formula-producing synthetic calculus. But by its very nature model elimination be-
longs to the family of analytic calculi based on semantic trees [Bet59], like the tableau
calculus [Smu68].

More precisely, model elimination can be seen as a special variant of the connection
method [Bib87]. The connection method offers a general framework for the proof-
theoretic treatment of logical formulae. It is based on the idea of reducing the task of
proving a formula to the task of checking all paths through the formula for tautology

1 Model elimination can be seen as a very simple realization of this
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or contradiction.
idea in a linear format, which is easily described with labeled trees or tableaux.

Definition 3.1 A connection tree or tableau T for a formula F' is a pair (£, u ), where
t is a finite tree and p is a function from the non-root nodes of ¢ onto literals such
that for any complete set of nodes N with the same immediate predecessor (parent)
the range pN (called tableau clause) is an instance of a clause in F.

1 To follow common practice we are dealing with the refutation of formulae, which is in contrast to
the affirmative approach in [Bib87].

2We prefer the framework of the connection method, because in the original setting (as, e.g. in
[LovT78]) model elimination is restricted to a fixed depth-first right-most execution model.



Definition 3.2 A tableau is called closed if every complete branch (path) contains
nodes K and L such that u(K) contradicts p(L),i.e. K and L are complementary
nodes.

It holds that a formula is unsatisfiable if and only if there is a closed tableau for the
formula (for a proof see, e.g. [Bib87]). Model elimination imposes further restrictions
on connection trees which do not affect completeness.

Definition 3.3 A model elimination tableau is a tableau satisfying the condition that
every node, which is not the root or a leaf, has at least one complementary node among
its immediate successors (children).

In practice, a closed tableau is constructed stepwise starting from the root by at-
taching new nodes to intermediate tableaux and by explicitly labelling branches as
closed at their leaf nodes. In these steps substitutions are imposed onto the variables

3. It is useful to differentiate the single

of the affected literals as induced by unifiers
construction steps of such a tableau starting from the children of the root (the start
clause) into extension steps and reduction steps. For convenience we often identify a

node with its value, the literal.

Extension step: suppose there is a unifier o for a leaf L in a tableau and a literal — L
in a (renamed) clause ¢ of the underlying formula, then perform the unification, take
the literals in co as children of L o, and label the branch at — Lo as closed.?

Reduction step: suppose there is a unifier o for a leaf [ and some ancestor =L in a
tableau, then perform the unification and label the branch at Lo as closed.?

A node (tableau) holds as open as long as it (all its nodes) is (are) not explicitly
closed. It holds that each model elimination tableau may be constructed by performing
a sequence of extension and reduction steps (for a proof see [Lov78]).

Let us consider for illustration of these concepts a simple example of first order
logic. It asserts that if for any pair of objects in a domain either a binary relation P
or the inverse relation holds, then for every object in the domain there exists an object
such that both relations hold:

VaVy(P(x,y)V Ply,x)) — Yodz(P(v,z) A P(z,v)).

Aiming at refuting the negation of the proposition, we shift to negated Skolemised
conjunctive clause normal form, and get the following set of clauses.

Example 3.1 {{P(x,y), Ply,x)}, {= Pla,z),m P(z,a)}}

A closed tableau for this formula is shown in Figure 2 below. The respective sub-
stitutions for the variables in the copies of the original clauses are given on the right,
and closed branches are labeled with an asterisk for extension (*g) and reduction (*g)
respectively.

3For completeness it is sufficient to use most general unifiers.

4This is the counterpart of binary input resolution within model elimination.

>This terminology must be distinguished from the one in [Bib87] where the combination of both
steps is called extension step.



Substitutions

P(l‘,y) P(y,l’) =4y =a
= P(a,z) - P(z,a) = P(a,z') - P, a) 2=z =a
*E *R *E *R

Figure 2: A model elimination tableau

An crucial property of model elimination is its independence from the node selection
function.

Definition 3.4 A tableau node selection function S assigns to each open tableau one
of its open leaves, at which the next inference step must be performed.

Let T be a closed model elimination tableau constructed by the sequence [ of
extension and reduction steps using a node selection function §. Then it holds for
each node selection function &’ which yields a permutation of I and a tableau T, that
T and T" are (renamable) variants of each other. In other words, it does not matter
in which order extension or reduction steps are applied to open nodes of intermediate
tableaux. (for a proof see, e.g. [BEK*89]).

The model elimination calculus may be refined and extended in various ways.
We are investigating on factorization,lemmata, and proof schemata. For details see
[LBSB89]. We have implemented a very powerful pruning mechanism, which is de-
scribed in the following.

3.1 Regular model elimination

Model elimination is already a rather refined calculus in the sense that it avoids a lot
of suboptimal connection proofs. But the model elimination calculus can be further
refined without losing completeness.

Definition 3.5 A regular® model elimination tableau is a model elimination tableau
with the following two properties:

e no tableau clause is a tautology”,

e 1no node in the tableau has an ancestor node with an identical literal as value®.

This restriction is in some analogy to regular resolution [Tse70].

"This condition ordinarily is included in resolution provers, because it can be more easily verified
than in model elimination implementations.

8This condition is also investigated in [Sti88].



For any unsatisfiable formula there is a closed regular model elimination tableau
(for a proof see, e.g. [BEK*89]).

Unfortunately, the regularity of a tableau is difficult to detect. Therefore, in the
current version this property is only approximated by checking it from time to time.
For a detailed description of this procedure and its advantage over the full model
elimination calculus consult [LBSB89] (compare also [Sti88]).

4 Exploitation of Parallelism

PARTHEO has been designed with the emphasis on theorem proving. In this field the
main problem is not the length of a proof?, but the large search space induced by
the branching factor of the underlying calculus. To cope with this problem currently
two main directions may be distinguished. One is to make the search algorithm more
intelligent, i.e. to apply heuristics and pruning strategies in order to reduce the search
space, the other is to do things in parallel. Although work is done in both directions,
we here want to focus on parallelism.

If a parallel algorithm has to be designed it is useful to keep in mind the parallel
machine on which this algorithm is to be implemented and executed. We have decided
to aim at hardware relying on message passing and local memories, and not on common
memory. The target hardware was a network of transputers. This choice promises
scalable implementations, in that the topology and the size of the hardware may be
varied easily.

4.1 Or-parallelism

One obvious way to distribute the search space over different processors is to apply
or-parallelism. The basic idea of this notion is explained as follows. The search space
induced by the model elimination calculus together with a given node selection function
can be described as a tree of tableaux.

Definition 4.1 Let F' be a formula consisting of n clauses, and let S be a tableau
node selection function. The model elimination or-search tree for F' and S 1is a tree,
where all nodes are labeled with model elimination tableaux such that
1. the root is labeled with the empty tableau,
2. there are n children of the root, which are labeled with the n different tableaux
constructable by just taking any clause in F' as start clause,
3. if a leaf node N has an open tableau T' as label, then the children of N are
precisely the nodes with those tableaux for F' as labels that may be constructed
by applying exactly one inference step to the selected open leaf node S(T').

An example of such a structure is displayed in Figure 3 below. The triangles encode
open (o) and explicitly closed (*) tableaux respectively. For each selected node S(T')

9Except for very artificial examples. Some of these may be tackled by extensions of the calculus
mentioned above (see [LBSB89]).



there exist as many succeeding nodes (and tableaux) as there are successful unifications
with literals from F' (extension) or with literals from the branch on which the node lies
(reduction). As during their generation the tableaux get more and more instantiated
we do not know in advance which of all possible unification attempts are successful.
To take this into account we have added another sort of nodes (FAIL) to the or-tree,
which represent the cases of unification failure!°.

A

A
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FAIL FAIL

£\ A A N

SN N s TN

Figure 3: Structure of a model elimination or-search tree including failure nodes

Apparently, for a given formula each node selection function uniquely determines
an or-search tree and its branching behaviour. Therefore some selection functions may
keep the branching rate smaller than others. In the current implementation we use a
very simple node selection function, viz., depth-first left-most selection, as in Prolog!!.

During the proof process the or-search tree of a formula must be explored from the
root to the leaves. Or-parallelism distributes the branches of the or-search tree between
the processors.

4.2 The basic algorithm

We assume that each processor has as program precisely the same inference machine
and the compiled formula. The variety comes in by giving different input to each
processor by communicating with other processors. This input is given essentially in
form of proof tasks, where each task corresponds to one node in the or-search tree
including failure nodes of the formula. Fach processor consists of three modules, the
proof unit, the communication unit and the local task memory.

10Note that in the compilation phase we apply pre-unification to construct a connection graph in
order to reduce the number of these failure nodes.

Note that during compilation we also apply some static selection mechanism according to such
branching criteria by reordering the literals inside each clause.



During the execution process each processor may behave differently according to
the three possible situations occurring during the treatment of tasks. First of all, a
task may be solvable, viz., if the encoded tableau is closed. In this case a proof has
been found, which is then reported to the user. Secondly, a task may fail, which is in
case that for the encoded tableau no expansion is possible under the given constraints.
This holds for instance if no unifiable partner may be found for the selected node, or
if some completeness mode prohibits an expansion, as explained below. Finally, a task
may ramify into finitely many subtasks, if there exist different inference possibilities
for the selected open leaf of the encoded tableau. This last case makes up the potential
for parallelism. The respective proof task gives rise to a number of new tasks, which
encode just the children in the or-search tree including failure nodes. The processor
cancels the old task, encodes the new tasks, and puts them into its local task memory,

thus making them available to other processors!?.

4.3 The task stealing model

Parallelism is achieved by propagating tasks over the network. We are striving for
a good load balancing without too much communication overhead. To this end we
subscribe to the philosophy that a processor should only send tasks to his neighbours
on request.

More precisely, PARTHEO employs a task-stealing model [BCLS89]. If a processor
executes a task which fails, it tries to get a new one from its local task store. In case it
is empty, the processor asks its direct neighbours for work. Since all processors must
check from time to time for incoming task requests, the respective idle processor will
get tasks from one of its neighbours which has tasks — say half of them. Thus tasks
are only transmitted over the network, if no work is available locally.

The proof process is initialized by setting all processors into the state of task request,
and by simply giving the root task, which encodes the empty tableau, to an arbitrarily
chosen processor.

4.4 The representation of tasks

A crucial issue for systems using message passing is the size of the transferred data.
The main data to be communicated in our model are the proof tasks. As mentioned
above, our inference machine is a variant of the Warren abstract machine. This means
that the data corresponding to a logical proof task are not compactly represented but
encoded in the stack, the heap, the trail, and the control registers of the abstract
machine. For transferring a task this involves that a lot of data had to be copied to
another processor, which is not feasible on a message passing system.

We have solved the problem of generating the same processor state on another
processor in analogy to the method how genetic information is stored in a living cell:
the DNA contains all the information for reproducing the cell. More precisely, we are

12 Actually, the processor keeps one of the new tasks to execute it immediately.



encoding a task as the sequence of choices that have to be made at each branching
point in the search tree. This sequence can be given as a list of integers, one for each
inference step. For a fixed node selection rule, this sequence uniquely determines the
desired processor state. This representation is very compact and puts no transmission
problems. The decoding of a task consists in deterministically recomputing the desired
state, and hence the respective tableau. A lot of double work, one could say. But
recalling that most proofs in theorem proving are rather short, this provision does
keep the loss in efficiency small*®. Actually, we employ an optimised version, viz., the
partial restart, which involves that in many cases it is not necessary to reproof the whole
tableau from scratch. This is the case if the old (failed) task and the new task from the
task store have a non-trivial common initial segment. Then the recomputation starts
at the first inference for which both tasks disagree. Obviously this method reduces the
amount of time needed to switch to a new task in the search tree. Additionally, if the
tasks are organised in a LIFO manner, for the sequential execution the partial restart
works nearly as efficient as an ordinary fail.

Allin all, the parallel algorithm may be summarized in the following C-like program.

on all nodes do
in parallel do {
proof: while true do {
get_task T from local_task_store;
do partial_restart;
if unification succeeds then

if T is closed then /* a proof has been found */
report_success_to_host;
else {
generate_new_tasks T1,...,Tn from T;
put Ti,...,Tn into local_task_storel}
else ; /* unification fails */

}
request: if isempty(local_task_store) then
request_tasks_from_neighbour;

send: if request_for_tasks_received then {
n = cardinality of local_task_store;
if n < 1 then
send_back("no_tasks");
else
send_back_tasks(n/2);
T}

Note that a detailed and formal specification of the informal description given in
this section is available [JS89], formulated in the parallel and functional specification
language FP2.

13Besides, this stays in concordance with our decision to use or-parallelism only.



4.5 The search strategy

In general the or-search-tree of a formula is infinite. Hence a complete search strat-
egy must be employed. The most natural approach for achieving completeness in a
finitely branching search tree is to search breadth-first, but in terms of efficiency this
contradicts the design decision of our parallel algorithm as well as the structure of the
Warren machine. Therefore PARTHEO realizes depth-first iterative-deepening search
[Kor85], as in [Sti88]. The idea is to consider only a finite initial segment of the search
tree. In case this segment is explored and does not contain a solution we take a greater
segment, and so forth!*.

The or-search tree is cut by imposing constraints onto the tableaux in the nodes of
the tree. These constraints are monotonic, i.e. if a tableau T violates them then do all
tableau in the or-search tree dominated by T'. We offer three different completeness
modes, by bounding alternatively the number of inferences in a tableau, the depth of
a tableau, or the number of admissible copies of every rule in a tableau, which are all
monotonic conditions. If a task is executed and its tableau violates (one of) the given
completeness condition(s), then this task just fails. In case a proof is not found within
given bounds, these bounds are increased, and the proof process is resumed. Currently,
this process is not fully automatic in PARTHEO for reasons described immediately.

Performing the iterative-deepening step in a sequential system is unproblematic.
Whenever a finite segment of the search space has been entirely explored the internal
proof algorithm comes up with a total fail. Then the bound(s) are increased and a
new internal proof process is started. In the parallel case it gets more complicated.
The problem is to determine exactly when the current finite segment of the search
tree has been completely explored. In such a case, according to the parallel algorithm
mentioned above, all processors must be in the state of requesting their neighbours for
work. This can only be detected by stopping the whole system and by investigating
the network node by node, which is very inefficient.

We propose another solution to this problem. To avoid the inefficiency arising from
stopping the network, we allow tasks from different iterative-deepening levels to be in
the network at the same time. To assure completeness, tasks from different levels are
labeled with different priority values. And, whenever a task is to be taken from the
task store, higher priorities must be preferred. This involves that we are not obliged
to wait until one finite segment is completely explored. We represent locally in (some
of) the processors the approximate task load of the system, which is updated from
time to time. If this value falls short of a certain threshold for these processors the
next iterative-deepening level gets initialized. Currently this mechanism is not fully
implemented, the iterative-deepening is controlled by hand.

5 Implementation

PARTHEO is designed to run on a network of transputers; both, the number of proces-

14 Actually, this can be viewed as a generalized version of breadth-first search.
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sors and the topology may be arbitrary. On each node of the network, an identical copy
of the Abstract Partheo Machine (APM) is running. The APM consists of a commu-
nication unit to perform the communication with other processors, a local task store,
and a sequential inference machine to execute the tasks. PARTHEO is implemented in
3L-parallel C [3L88]. As the basic communication mechanism, synchronous message
passing is used. Inside one transputer the access to global data structures is controlled
via semaphores.

5.1 The network

Our hardware system consists of 16 + 1 T800’s; the interconnection of processors may
be changed by software so that experiments with several different topologies can be
carried through. One of the transputers is the host processor, which is connected to
the host system, in our case a sun 386i.

A typical configuration scheme (similar to a torus) is shown in Figure 4.
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Figure 4: Typical hardware configuration scheme
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5.2 The Abstract Partheo Machine — APM

In contrast to all other processors running an APM, the host processor contains no
inference machine. Its only task is to interpret the command line, to open and read files,
and to send commands to the other processors. Returning messages are interpreted
and a success is displayed. During the search for a proof, the host processor also sends
statistics requests to the other processors in regular intervals. The returned data are
used to make measurements. In the following, however, we only look at the APM in
detail.

An APM may be subdivided into three major parts, each of them consisting of one
ore more threads, running concurrently on the processor:

11



SAM The kernel of an APM is the sequential inference machine of SETHEO, the
SETHEO Abstract Machine SAM, which will be described in detail below. Its
main action is to execute tasks and to generate new ones. To do this the original
sequential machine had to be augmented with some new instructions to be able
to communicate with the other parts of the APM.

Task Store The task store can be accessed by two processes: If the SAM encounters
an or-node, newly created tasks are encoded and put into the task store. If the
current task fails, the SAM takes a new task from the task store. If another
processor requests tasks or if tasks are received, the communication unit gains
control over the task store. It also has to check in regular intervals how many
tasks are available in the task store. If it is empty, the task requesting mechanism
is activated.

Communication Unit The communication unit of one processor contains several
processes, which communicate via shared variables controlled by semaphores.
The communication unit forwards messages to the host, receives and executes
commands and handles the task stealing mechanism. Within the system three
types of messages are exchanged between the processors:

o Commands are sent from the host processor to each processor or to a des-
ignated processor. They are used, e.g. to load the SAM-code into the code
memory of the processors, to set parameters, and to start and stop the
SAMs. A message from the host to a designated processor contains addi-
tional routing data. The communication unit reads this information and
routes the message to one of its neighbouring processors. This allows to
keep a global routing table on the host processor only.

o Return messages are sent from a single processor to the host processor. Such
a return message can be a success or failure result, statistical data or error
messages. They must be forwarded by the communication unit.

o Tuask requests and sends. Processors with an empty task store request tasks
from their neighbouring processors in regular intervals. A timer process
sends a task request to all direct neighbours of the processor in sequence. If
a processor receives such a message it sends back, e.g. half of its own tasks,
provided it has enough. Otherwise it informs the requesting processor, which
tries to get tasks from another neighbour.

5.2.1 The SETHEO Abstract Machine (SAM)

The sequential inference machine SAM, which is both used in SETHEO and as the
kernel of the APM, is implemented as an abstract, register-oriented machine. The
machine and its instructions are based on Warren’s abstract machine (WAM) [War83]
and its RISC version [VH87]. The concepts introduced there had to be extended and
enhanced for ending up in a complete and sound proof procedure based on the model
elimination calculus, and for facilitating the use of advanced control structures and
heuristics. The layout of the abstract machine is shown in Figure 5.

12
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Figure 5: SETHEO Abstract Machine

Similar to the WAM, the memory of the SAM is tagged (4 bit) and consists of
several parts. Besides the code area, the heap, stack and trail, which can also be found
in the WAM), some other data areas are used in the SAM. The proof-tree stores the
current state of the generated tableau, which can be displayed graphically to illustrate
the structure of the proof process. In the copy-bound it is stored how many copies of
each clause are still admissible. Generated lemmata are hold in the lemmata space.
A detailed description of all the instructions and registers is available as a manual

[STv89].

During the proof process full unification is rarely needed. Hence it is more efficient
to have different instructions for the unification of one term according to its data type
(variable, term, constant, etc. ). For full unification the (exponential) Robinson algo-
rithm is used. Optionally, we offer the more sophisticated Corbin algorithm [CM83],
which has quadratic complexity. To reduce the number of occur-checks a simple heuris-
tic is employed: an occur-check is omitted in extension steps into clauses for each first
occurrence of a variable inside the head (compare also [Pla84]).

As the SAM had to be changed only very little to be integrated into the parallel
PARTHEO system all features available in the sequential machine are also available in
PARTHEO, e.g. global variables.

6 Performance Measurements

To get representive speed-up results of the system, we made measurements with prob-
lems from the field of theorem proving and logic programming. As theorem proving
examples we took problems of the Wilson and Minker study [WM76], which are also
used in [Sti88] as a set of benchmarks **. The non-obviousness example is a problem
appearing in [PR86]. Lukasl! is a formulation of a single axiom system for the propo-

15These examples have also been used to make performance measurements for SETHEQ. For details

see [LBSB89].
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sitional calculus [Pfe88]. Fder2-7 is an example of a formula class [Ede85] transformed
to Horn clauses (using the transformation described in [Let88]). The other problems
are taken from the field of logic programming, because they could be easily modified to
serve as good speed-up benchmarks. The Queens examples are just the standard Pro-
log programs for solving the queens problem. The Mazimum program is a quadratic
program for computing the maximum of a list of integers. PropSat consists of a pro-
gram for finding models of a propositional formula plus one example formula. Finally,
FairyTale is a plan generation problem, which consists in finding the happy end of a

fairy tale.
Problem SETHEO [sec] | PARTHEO!® [sec] | speed-up | rel. speed-up
Wos4 3413 1.843 1852 115.8
Wos9 64.0 2.16 29.7 1.86
Wosl10 262.6 135.6 1.94 121
Wosl6 36490 5.89 6194 387
Wos25 575.3 114.2 5.03 314
Wos29 254.5 48.1 5.29 331
LS36 1666 352 4.73 .296
LS108 841.6 95.7 8.8 .550
LS121 44.24 10.25 4.32 270
Non-obv. 4.5 1.84 2.44 153
Lukas11 8.4 657 12.78 799
Eder2-7(H) 53.7 11.8 4.56 285
Queens8 16.9 1.84 9.20 575
Queens9 83.6 9.21 9.06 .566
Queensl0 396 38 10.4 .650
Maximum 17.1 4.55 3.76 .235
PropSat 48.8 7.31 6.67 A17
FairyTale 24.0 1.81 13.7 .856

Figure 6: Run-time comparison of SETHEO (T 800) and PARTHEO (16 x T 800)

As a matter of fact, speed-ups in or-parallelism may vary strongly depending on
where the solution is located in the search tree. For getting more reliable results, the
following three problems are of great significance. Queens8, Queens9, and Queensi(
are modified in a way that only one chess-board position, which is exactly in the middle
of the search tree, is exclusively accepted as the right solution. If then the search tree
is distributed between the nodes, statistically, the correct speed-up (for this problem)
can be computed. The same holds for PropSat, which contains a propositional formula
with just one model.

Due to time limitations we were not interested in finding fastest proofs with SETHEO
and PARTHEO. So we used depth-bounded search as the only completeness mode.

16 Average run-time of 5 runs.
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Since iterative-deepening is not yet fully supported all examples were tried with a
fixed depth-bound sufficient to find a proof.

In the table of results in Figure 6 the last row displays the relative speed-up, which
is defined as the ratio of the speed-up to the number of nodes. We have tested the
PARTHEO theorem proving system on a network of 16 transputers T 800 arranged in
a hypercube topology, as displayed in Figure 4.

7 Related Work

In the following we want to mention very shortly some parallel systems!?, theorem
provers or parallel Prolog systems, which have some similarities with PARTHEO. Most
of these systems use or-parallelism and variants of the Warren Abstract Machine. In
contrast to PARTHEOQ, however, all systems except the DelPhi system are using hard-
ware with a common memory.

One of the basic models for or-parallel execution of Prolog and also model elimi-
nation based systems is the SRI-model developed by D.H.D. Warren [War88]. It uses
shared memory and so-called cactus stacks to maintain multiple variable bindings which
occur in or-parallelism. An implementation on 8 Balanc 32020’s yields 23 Klips. A
further refinement, the andorra model [War88] comprises also stream-dependent and-
parallelism.

Parthenon [BCLS89] is an or-parallel theorem prover for first order logic based on
model elimination. It uses a modification of the scheme proposed in the SRI-model.
Parthenon is running on an Encore Multimax with 16 processors and shared memory.
Like PARTHEO it uses a task-stealing model to distribute unexplored subtrees over
the processors. Its peak performance is about 30 Klips with 15 processors (for detailed
figures see [BCLS89]).

METEOR [Ast89] is a model elimination theorem prover for full first order logic
which employs or-parallelism. It uses Warren’s SRI model for or-parallel logic pro-
gramming. It runs on a 32 node BBN Butterfly GP1000 under the Mach operating
system.

Another parallel theorem prover was developed by V. Kumar et.al. [BSL*89]. It is
based on the WAM and the SRI-model on a parallel machine with shared memory and
employs and-parallelism within a producer-consumer approach.

The DelPhi inference machine [Clo87] uses multiple communicating processors with
a shared memory for executing logic programs (Prolog and TABLOG). Different nodes
in the and-or-tree (encoded as oracles similar to the tasks in our model) are distributed
over the processors. The oracles are generated by one control processor in the system.
A prototype has been implemented on a network of VAX and p¢VAX stations.

PEPSys is a parallel Prolog-system developed at the ECRC and comprises or-
parallelism as well as independent and-parallelism [BKH7*88]. The problem of main-
taining multiple variable bindings (in or-parallelism) is solved using hash-tables. The

Y70f course this list is by far not complete.
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architecture used is similar to the SRI-model. PEPSys is implemented on a shared
memory Siemens MX500 (equiv. to Sequent Balance 50) and simulations with a spe-
cial multi-cluster architecture with up to 100 processing elements have been carried
through.

8 Conclusions

PARTHEQO is a system combining a number of promising features in the fields of theorem
proving and logic programming. It integrates the model elimination calculus, abstract
machine technology, and or-parallelism. PARTHEO offers the power and expressiveness
of first order logic while retaining the performance of Prolog. First, because of the
high efficiency of SETHEO, which runs on each node of the network. And secondly,
because the or-parallel distribution of the search space may decrease the proving time
tremendously.

Due to time limitations there was no possibility to change a number of interesting
parameters, among which are the number of processors and the network topology.
Notwithstanding that, we have identified a class of significant and reliable problems,
for which a good speed-up has been achieved. It is at about 0.55 for the representative
examples. This seems to us a very satisfactory result for the current unoptimized state
of the system. The fact that the used processor type, the transputer T 800, is already
very fast, makes this relative speed-up also a success in terms of absolute efficiency.
For a certain class of examples (see [LBSB89]) we achieved a performance of 17 Klips
on one transputer node. Moreover, the design decision to rely on processor-processor
message passing and local memories, makes the system scalable, so that it may be
extended without difficulties to networks with a large number of processors.
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